Env Groups & Citizens write to PM to take Urgent Action on Ganga

February 19, 2019


  1. Hon’ble Mr. NarendraModi,

Prime Minister of India,

2. Hon’ble Mr. Nitin Gadkari,

Minister, Water Resources and Ganga Rejuvenation Ministry,

Government of India.

3. Hon’ble Mr. Trivendra Rawat

Chief Minister, Uttarakhand

Subject: River Ganga

Respected Sirs,

There is no debating that Ganga must flow free or will perish with all attendant consequences. This is vindicated by Ravi Chopra Committee in its report to the Supreme Court submitting that there has been an increase in disasters in Uttarakhand ever since the tragedy in 2013, due to the presence of big dams. The Union of India under your governments pledged to rejuvenate the Ganga including Alaknanda, Mandakini and Bhagirathi and all their tributaries.  

Presently, four under-construction dams namely Tapovan-Vishnugad, Vishnugad-Pipalkoti, Singoli-Bhatwari and Phata-Byung are further threatening the survival of this river adding to the damage already done by the existing dams.

To save the River Ganga, Swami Saanand fasted for 111 days to draw your attention to River Ganga’s  cries for survival before he succumbed unheeded. Carrying on the baton, Sant Gopaldas fasted for 146 days when he disappeared under suspicious circumstances unheard and unheeded. Presently the 26 year old young Brahmachari Aatmabodhanand from Matri Sadan, Haridwar, has been on a fast since 24th of October 2018 determined to carry on the baton for a positive response on Ganga from your governments.

Continue reading “Env Groups & Citizens write to PM to take Urgent Action on Ganga”

DRP News Bulletin

DRP News Bulletin 10 Dec. 2018: Yamuna Pollution; Will NGT Panel Make Any Difference? 

Feature image: A Hindu woman worships the sun god in the polluted waters of River Yamuna during Chhath Puja in New Delhi, on Nov. 14. (Image Source: Quartz India.) 

In its latest report, the National Green Tribunal (NGT) appointed monitoring committee overseeing Yamuna River cleaning progress in Delhi says that the river is “fighting to stay alive” and it would not be possible to rejuvenate the Yamuna unless minimum environmental flow is provided as it is “virtually reduced to a trickle and remains dry in some stretches for almost nine months of the year”.

In the action plan, it is mentioned that “Although the Yamuna river flows only for 54 kilometres from Palla to Badarpur through Delhi, the 22 km stretch from Wazirabad to Okhla, which is less than 2 per cent of the river length of 1370 km from Yamunotri to Allahabad, accounts for about 76 per cent of the pollution level in the river”.

The committee has suggested that a team of scientists be formed from CPCB, DPCC and other institutions like IIT Delhi or NEERI to carry out inspections and submit reports to it for remedial action. The team can look into the risks and benefits of an alternative way of routing the same quantity of water which can help in reducing the pollution level, it said.

The monitoring committee also raised objection to the capacity utilisation of common effluent treatment plant (CETP) which is as low as 25 per cent. There are 28 industrial clusters in Delhi and 17 of these are connected to 13 CETPs. The remaining 11 clusters are not connected to any CETP. Another area of concern is the direct discharge of completely unregulated waste from industries and residences into the river.

Continue reading “DRP News Bulletin 10 Dec. 2018: Yamuna Pollution; Will NGT Panel Make Any Difference? “

Bhagirath Prayas Samman · Dams · Kerala · Western Ghats

Remembering Latha

It took some time to write. Latha chechi and me talked just 4 days before she passed away on Nov 16, 2017. As usual, it was about when we will meet next and go to Athirappilly Falls and travel to the river together. Her voice was light, it had a surreal gentleness. We agreed on everything, which was rare. After just a few minutes, Unni gently took the phone from her and told me she needed to sleep. It just didn’t feel right.

We first met virtually about 10 years back, discussing rivers and forests and then, through her initiative, came together to organize the first civil society workshop on Environmental Flows in January 2009 with SANDRP.  Since then, Latha Chechi has been a bubbling, enthusiastic and wise constant. We worked on several submissions together, discussed strategies and ideas, eating each other’s heads about what worked and what can work and always, I was always taken aback by her unmatched way of linking issues.

She told me, “You need one particular river. Work on all the rivers of world, but have that one river to go back to.” Continue reading “Remembering Latha”



Guest Blog by Manoj Misra

Rivers in different parts of the world have been dammed to fulfill human needs like water for irrigation, industries and domestic supplies. Then there are dams that have been raised to control floods or to produce electricity.

These have often been celebrated as human victory over nature, glorified as engineering marvel and claimed variously as highest, longest etc as a matter of national pride.

But rarely has there been a holistic assessment or appreciation of what a dam does to the natural entity called river and its adverse impacts on all the associated life forms, including humans.


Fish Sanctuaries · Maharashtra · Western Ghats

White Elephant, Black Fish

How a 15 MW project with 55 mts high dam threatens 5 villages and a fish sanctuary

After an analysis of a particularly nasty dam, I felt like going back to flowing rivers. It is monsoon after all. The plan was to visit Kal River in Western Ghats of Raigad District in Maharashtra to understand how a community in a small village called Walen Kondh is protecting the river and Mahseer fish. Mahseer (Deccan Mahseer, Tor tor) is classified as endangered as per IUCN classification and most wild Deccan Mahseer populations have been wiped out in India. And hence a small, out of the way place, protecting these fish as well as the river voluntarily was like a breeze of fresh air. Continue reading “White Elephant, Black Fish”

Ministry of Environment and Forests · Ministry of Water Resources

MoWR report on “Assessment of E-Flows” is welcome, needs urgent implementation

A three member committee set up by the Union Ministry of Water Resources, River Development and Ganga Rejuvenation (MoWR for short) has submitted a report in March 2015, which makes welcome recommendation on “Assessment of Environment Flows”. These recommendations on Environmental Flows (E-Flows) need to be implemented immediately for better health of our rivers. The committee members include Dr Vinod Tare of Indian Institute of Technology Consortium (IITC), senior officials of Union Ministry of Environment, Forests and Climate Change (MoEF for short, it was represented by Dr Shashi Shekhar, Special Secretary in MoEF) and MoWR (represented by Dr Amarjeet Singh, Additional Secretary, MoWR). Sushri Uma Bharti, Union Water Resources Minister[1] and even the recent meeting of National Ganga River Basin Authority (NGBRA) on March 26, 2015[2], headed by the Prime Minister referred to this committee. Continue reading “MoWR report on “Assessment of E-Flows” is welcome, needs urgent implementation”

Cumulative Impact Assessment · Environment Impact Assessment · Hydropower

Sinking and Shrinking deltas: Major Role of Dams in abetting delta subsidence and Effective Sea Level Rise

“We enjoy Pushing Rivers Around” –An early Hydraulic engineer in California (from Patrick McCully’s Silenced Rivers, 1996)

 “We can tame the mighty rivers. We are an example of human will and endeavor”

-Sutlej Jal Viduyt Nigam Limited, damming the entire Satluj Basin in India.

 “A river flowing to the sea is a waste”- a view held by several water resource developers in India

Welcome to Anthropocene [1], says James Syvitski, a leading oceanographer, geologist and hydrologist from Colorado University who has been studying subsidence of deltas.

Some scientists are now placing Anthropocene, an era marked with human interference with natural systems, at par with geological epochs like Pleistocene and Holocene. It is manifested in many ways. Rivers and associated systems like deltas and floodplains possibly have had to face the maximum brunt of the Anthropocene.

Cutting edge scientists like Prof. Syvitski who study the changes in our deltaic systems seem to reach to a common conclusion: Delta subsidence is now the main driving force for effective sea level rise for many coastal environments. This subsidence is more influential than sea level rise related to global warming and any deltas are sinking much faster than the sea level is rising.

But why are deltas sinking? What is the main reason behind this subsidence which is eating away land and making millions of people more vulnerable?

It has been established that the main reason behind delta subsidence is drastically reducing sediments reaching the delta.Studies estimate that during the past century, there has been a 94% reduction in Krishna’s sediment reaching the delta, 95% reduction from historic load in Narmada, 80% reduction in Indus, 80% reduction in Cauvery, 96% reduction in Sabarmati, 74% reduction in Mahanadi, 74% reduction in Godavari, 50% reduction Brahmani, etc.[2],[3]

But why are sediments not reaching the delta?

Almost unanimous agreement between scientists indicates that the reason behind this drastic decline in sediments is sediment retention by dams and reservoirs in the upstream[4].(Walling and Fang (2003), Vörösmarty et al., 2003; Syvitski et al.,(2005), Erisson et al, (2005), Walling (2008), K Rao et al (2010), H Gupta et al (2012) ). This has been reiterated in IPCC WG II Report, April 2014.[5]

Bhola Island in Bangladesg, eroded by Meghana RIver. PhotoSrestha Banerjee, Green Clearance Watch
Bhola Island in Bangladesh, eroded by Meghana River. PhotoSrestha Banerjee, Green Clearance Watch

Prof. Syvitski wrote a few words on the issue for SANDRP. He says, “A delta can form only where the sediment volume supplied from a river can overwhelm the local ocean energy (waves, tides, currents). Ocean energy is ceaseless. Engineering of our river systems, largely through the construction of upstream dams and barrages, has reduced this sediment supply. Consequently ocean energy has begun to reduce the size of our deltas, and coastal retreat is presently widespread. Deltas, once the cradle of modern civilizations, are now under threat — some deltas are in peril of lasting only the next 100 years. Sea level is rising due to ocean warming and glacier melting. Incessant mining of groundwater from below a delta’s surface, along with oil and gas extraction, further contribute to our disappearing deltas. At risk are the residences of more than 500 million people, the loss of biodiversity hotspots, major infrastructure (e.g. megacities, ports), and the rice and protein bowls of the world. Every year thousands of people drown due to storm surges and other coastal flooding. Sinking deltas are evidence of the magnitude of the human footprint on our planetary environment. We must learn to do better.” Professor J P Syvitski (U Colorado, Boulder, USA), Chair — International Geosphere-Biosphere Programme (ICSU), Executive Director, the Community Surface Dynamics Modeling System

Large reservoirs trap as much as 80% of the upstream silt. As a result, most rivers are carrying much less sediment, and some rivers (like Krishna, Indus, Nile, and Colorado) transport virtually no sediment! In the last 50 years, the combined annual sediment flux of the large Chinese rivers has been reduced from 1800 million tons (Mt) to about 370 Mt[6]mainly due to frenzied dam building. The impact of dams and reservoirs on sediment retention has been so significant that the resultant reduced sediment load represents a volume of about 730 km3, equivalent to an area of 7300 km2 assuming a 10 m thick bed[7]. Waling (2008) states that about 25 Gt/year of sediment are trapped by large dams each year. IPCC Report (Assessment Report 5, 2014) refers that 34 rivers with drainage basins of 19 million km2 in total show a 75% reduction in sediment discharge over the past 50 years due to reservoir trapping.

Delta Subsidence and Effective Sea Level Rise (ESLR)

While this delta subsidence and sediment retention has several impacts on dense delta population and coastal ecosystems which offer important services, one of the most serious impacts is its direct role in Effective Sea Level Rise. Ericsson and Vorosmarty et al, 2012[8], concluded that decreased accretion of fluvial sediment resulting from sediment retention and consumptive losses of runoff from irrigation (also due to dams) are the primary determinants of ESLR in nearly 70% of studied deltas.

More and more scientists are concluding that climate related sea level rise has a ‘relatively minor influence on delta conditions’, as compared to anthropogenic reasons. As seen above, there is an almost unanimous agreement that dams are the most important factor influencing contemporary land-ocean sediment fluxes.[9] Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in artificial impoundments of approximately 45,000 reservoirs (with dams 15 m high) (Vörösmarty et al., 2003; Syvitski etal., 2005) and sediment delivery to deltas has been reduced or eliminated at all scales.[10]Other reasons for delta subsidence include flow diversion by dams, sediment compaction due to groundwater abstraction, oil and gas exploration and mining, etc,.[11]

Deltas, formed by centuries of accretion of rich sediment, are one of the most fertile and densest populated regions across the world. It is estimated that close to half a billion people live on or near deltas, often in megacities.[12] Although constituting a mere 5% of the total landmass, coastal regions sustain almost three-quarters of the world’s population and yield more than half of global gross domestic product (Vorosmarty et al.,2009).

The direct impacts of ESLR and delta subsidence include inundation of coastal areas, saltwater intrusion into coastal aquifers, increased rates of coastal erosion, an increased exposure to storm surges, etc. These threats have implications for hundreds of millions of people who inhabit the deltaic as well as the ecologically sensitive and important coastal wetland and mangrove forests.

Already, some studies are ringing alarm bells. It is estimated that if no mitigation measures are undertaken and sediment retention continues, then by 2050, more than 8.7 million people and 28,000 km2 of deltaic area in 33 deltas studied including Ganga-Brahmaputra, Indus, Krishna and Godavari could suffer from enhanced inundation and increased coastal erosion. In addition, a larger population and area will be affected due to increased flood risk due to storm surges[13]. Conservative estimates state that delta area vulnerable to flooding could increase by 50% under the current projected values for sea-level rise in the 21st century and this could increase if the capture of sediment upstream persists and continues to prevent the growth of the deltas.[14]

The Intergovernmental Panel on Climate Change (IPCC) projects that sea level will rise by another 21 to 71 cm by 2070, with a best estimate of 44 cm averaged globally. This will further compound impacts of delta subsidence and sediment trapping.

It has been estimated that even in the case of debilitating floods, sediment has not reached rivers in the deltas.[15]In 2007–08 alone Ganges, Mekong, Irrawaddy, Chao Phraya, Brahmani, Mahanadi, Krishna and Godavari flooded with more than 100,000 lives lost and more than a million habitants displaced. Most of the deltas that suffered from floods did not receive a significant input of sediment, and this lack of sediment can be attributed to upstream damming.[16] Some studies demonstrate that storage of sediment-laden water of major flood events leads to huge sediment trapping behind mega dams.[17]


Above: Global distribution of ESLR under baseline for each of the 40 deltas studied by Ericsson et al, 2006.From Ericsson et al, 2006

Fluvial Sediments and Deltas in India

Rivers are not only conduits of water. They are a complex, moving systems carrying sediment, nutrients, organisms, ecosystems, energy, material and cultures in their wake.

There are three kinds of sediments: suspended, bed load and wash load. Here we are referring to mainly the suspended sediments in the rivers. Sediments play a significant role in the river geomorphology, defining the river channel, its shape and structure. Sediment deposits form alluvial floodplains, deltas, levees, beaches, ox bow lakes and lagoons and creeks. The sediment load and composition changes according to the river, the geological landscape it flows in, its length, flow, structure, etc. While much of the sediment is deposited by the river on its banks, the delta of the river is primarily formed of rich sediments. Through this deposition, the river may form distributaries at its mouth, like in case of Ganga, Brahmaputra or Mahanadi systems. Ganga-Brahmaputra Delta, shared by India and Bangladesh is one of the largest delta systems in the world, spanning more than 100,000 km2[18]carrying more than one billion tonnes of sediments annually.[19]

Deltaic populations in shared rivers of India, Bangladesh and Pakistan: Population of Ganga-Brahmaputra-Meghana Delta is more than 147 million people with a population density of more than 200 people per km2 (520 people per square mile), making it one of the most densely populated regions in the world . The Krishna Godavari twin deltas supports 9·26 million people inhabiting the 12,700 km2 area at 729 persons per km2, which is more than double the country’s average.[20] Cauvery delta supports 4.4 million people[21] while the Mahanadi Delta too supports millions. Only two districts of Cuttack and Jagatsinghpur have a population more than 3.7 million. (Census 2011) in addition, the contribution of deltas to economics, food production, transport, ecosystem services etc., is immense, making it a very valuable ecosystem which deserves protection. Indus Delta in Pakistan supports more than 900,000 people.

Deltas in Peril: Impact of damming on deltas in India

1. Krishna-Godavari Delta: In 2010, a team led by K Nageswar Rao of Dept of Geo Engineering, Andhra University, carried out an assessment of the impacts of impoundments on delta shoreline recession in Krishna and Godavari Delta.[22] The study revealed a net erosion of 76 km2 of area along the entire 336-km-long twin delta coast during the 43 years between 1965–2008 with a progressively increasing rate from 1·39 km2 per year 1965 and 1990, to 2·32 km2 per year during 1990–2000 and more or less sustained at 2·25 km2 per year during 2000–2008.

For Krishna, flows as well as suspended sediments in the delta have nearly reached zero. Suspended sediment loads decreased from 9 million tons during 1966–1969 to negligible 0·4 million tons by 2000–2005. Syvitski et al in their 2009 assessment place Krishna in the category of “Deltas in Greater Peril: Virtually no aggradation and/or very high accelerated compaction.”

In the case of the Godavari delta, there has been almost a three-fold reduction in suspended sediment loads from 150·2 million tons during 1970–1979 to 57·2 million tons by 2000–2006. Syvistki et al classify Godavari delta as “Deltas in greater risk: reduction in aggradation where rates no longer exceed relative sea-level rise”. H Gupta et al (2012) suggest that decline in historic sediments of Godavari post damming has been as high as 74%.


Above: Graph indicating decadal sediment and water flow trends at Prakassam Barrage, across Krishna. Dam building also marked. From Rao et al, 2010

According to Dr. Rao, a comparison of data on annual sediment loads recorded along the Krishna and Godavari Rivers shows consistently lower sediment quantities at the locations downstream of dams than at their upstream counterparts, holding dams responsible for sediment retention. Reports based on bathymetric surveys reveal considerable reduction in the storage capacities of reservoirs behind such dams. Authors say: “Sediment retention at the dams is the main reason for the pronounced coastal erosion along the Krishna and Godavari deltas during the past four decades, which is coeval[23] to the hectic dam construction activity in these river basins.”

Impacts of this can be seen in destroyed villages like Uppada in Godavari delta, destruction of Mangrove forests and shoreline. Similarly Krishna delta is losing land at the rate of 82·5 ha per year, leading to destruction of mangrove forests and loss of land.

The study concludes: “If the situation continues, these deltaic regions, which presently sustain large populations might turn out to be even uninhabitable in future, considering conditions elsewhere, such as in southern Iraq, where the farmers downstream of dams across Tigris River in Iraq, Syria and Turkey are being forced to migrate to urban centres as the reduced river flows become overwhelmed by seawater.”

I talked with Dr. Rao and asked him, if his disturbing study had any impacts. He said, no one from the administration has contacted him ever about this issue.



Above: Sediments measured at Sir. Arthur Cotton Barrage across Godavari near the Delta from Rao et al, 2010

A similar study by IWMI[24] concludes: “Coastal erosion in the Krishna Delta progressed over the last 25 years (is) at the average rate of 77.6 ha/ yr, dominating the entire delta coastline and exceeding the deposition rate threefold. The retreat of the Krishna Delta may be explained primarily by the reduced river inflow to the delta (which is three times less at present than 50 years ago) and the associated reduction of sediment load. Both are invariably related to upstream reservoir storage development.”

Krishna Basin Water Disputes Tribunal Award, though mentions dam siltation (it mentions that in 5 decades, Tungabhadra Dam has silted up to 22% of its capacity), does not say anything about flow for flushing sediments or its importance to the delta in Andhra Pradesh, or if the “minimum instream flow” recommended by the Tribunal will address this issue. This is a major limitation of the tribunal, when advanced studies have been conducted on the Krishna River delta condition and its relation to upstream dams has been established beyond doubt. Only at one place does it mention that to reduce siltation of the Almatti Dam, sluice gates should be opened when water is flowing above the crest.

However, the Award states that issues like minimum in stream flows are not decided once for all and it is an evolving process. Let us hope that there is some space to address the issue of shrinking deltas through this.


Above:Decreasing Sediments of Krishna down the years from K Rao et al, 2010

In the upstream Maharashtra, more and more dams are under construction in the Krishna Godavari Basin. One of the proposed dams called Kikvi, at the headwaters of Godavari in Trimbakeshwar was cleared by the Forest Advisory Committee recently. Ironically, the proponent (Water Resources Department, Maharashtra and Nashik Municipal Corporation) justified this dam which will submerge more than 1000 hectares of land, by stating that one more large dam close to Kikvi: Gangapur Dam is heavily silted up. [25]Rather than desilting Gangapur Dam, the administration wants to build one more dam.


Above: Trends in Sediments in Godavari and dam building activity. From K Rao et al

Many dams in Krishna Godavari Basin in Maharashtra have been criticised for not contributing to increasing irrigation.[26]These dams are not only obstructing river flow, but are also acting as sediment traps. Unfortunately, the MoEF is not even considering impacts of sediments while appraising dams. In Karnataka, major projects are being undertaken by fraud, without environmental appraisal, violating Environment laws, [27]similarly in Andhra Pradesh, many projects are being pushed illegally without environmental appraisal and which involve huge corruption[28].

2. Cauvery Delta: Although detailed studies have not been carried out, there is a clear indication of salt water intrusion and delta erosion in this over developed basin, due to upstream dams. The saline-freshwater boundary map indicates a steady migration inland.

A study by Gupta et al, 2012, indicates that historical sediment flux of Cauvery was 1.59 million tonnes, which is now 0.32 million tonnes (average of 10 years) and hence, there is a whopping 80% reduction in sediment flux of the river.

Unfortunately, the Cauvery Water Disputes Award Tribunal between Karnataka and Tamilnadu does not even mention the word ‘sediment’ in its award. There has been no justification for 10 TMC feet (Thousand Million Cubic feet) water recommended by the Tribunal for Environmental purposes and its possible impact on sediment carrying (or even environment for that matter).

Pennar showed 77% reduction and Mahanadi showed 67% reduction in amount of silt reaching the delta in recent years. (Gupta et al, 2012)

3. Narmada Delta: The west flowing rivers like Narmada and Tapi do not form extensive deltas like the east flowing rivers. Nonetheless, sediments from a huge river like Narmada play an important part in the stability of Narmada delta and villages and ecosystems around it.


 Above: From: H. Gupta et al, 2007 and 2012

Gupta et al (2012 and 2007) assessed daily water discharge and suspended sediment load data measured by CWC at two gauging stations, one upstream of the Sardar Sarovar dam (Rajghat), and another downstream of the dam (Garudeshwar).

Historical sediment discharge of Narmada was found to be 61 million tonnes and the current sediment discharge (average of last ten years of the study) was found to be 3.23 million tonnes, indicating a reduction of 95% sediment discharge.[29] The presence of dam reduces 70–90% of coarse and approximately 50% of medium-sized particles on their way downstream, allowing them to settle in the reservoir Comparative studies of average suspended sediment load at various locations on the Narmada River for more than two decades, show overall reduction in suspended sediment load in the river.

The study indicated 96% reduction in suspended silt flux in Sabarmati, 41% reduction in Tapi and 68% in Mahi.

4. Ganga- Brahmaputra Delta: Different studies put different values for individual and combined sediment load of the Ganga Brahmaputra system, which carries one of the highest sediment loads in the world. According to Islam (1999)[30] Ganges and Brahmaputra rivers in Bangladesh transport 316 and 721 million tonnes of sediment annually. Of the total suspended sediment load (i.e. 1037 million tonnes) transported by these rivers, only 525 million tonnes (c. 51% of the total load) is delivered to the coastal area of Bangladesh and the remaining 512 million tonnes are deposited within the lower basin, offsetting the subsidence. Of the deposited load, about 289 million tonnes (about 28% of the total load) is deposited on the floodplains of these rivers. The remaining 223 million tonnes (about 21% of the total load) is deposited within the river channels, resulting in aggradation of the channel bed at an average rate of about 3.9 cm/yr sediment.

Across the 20th Century, Syvitski et al suggest about 30% reduction of silt load in the river system. Gupta et al [31] suggest that the observed decrease in sediment load could be due to construction of several mega dams in the Ganga basin, closure of Farakka barrage (1974) and diversion of sediments laden water into the Hooghly distributary. They also caution that dams in Ganga and Brahmaputra can worsen the situation.

5. Indus Delta: Inam et al (2007) assessed annual sediment loads of the Indus river at Kotri Barrage (270 km upstream from river mouth) during the last 73 years. The study indicates that annual sediment load of the Indus river has reduced drastically from 193 Mt (between 1931 and 1954) to 13 Mt (between 1993 and 2003). According to them, construction of three large dams on the Indus river, namely Kotri Barrage, Mangla and Terbela led to this situation causing annual water discharge to reduce from 110 km3 to 37 km3, with disastrous impacts on the delta ecosystem and population.


Above: Variation of water and sediment discharge below Kotri Barrage in Indus basin: Inam et al

Dying mangroves in Indus Delta Photo: The Nation
Dying mangroves in Indus Delta Photo: The Nation

Inam states : “Currently the Indus river hardly contributes any sediment to the delta or Arabian Sea.The active delta is reduced from 6200 km2 before construction of dams to 1200 km2. The sea water has travelled upstream upto 75 kms, combined loss of freshwater and sediment has resulted in loss of large areas of prime delta agricultural land and submergence of several villages in the coast. This has caused desertification and displacement of several hundred of thousands of local residents. Study of records and bathymetric maps from 1950 indicate widespread coastal retreat…The life on the delta is dependent on availability of freshwater and sediment. Severe reduction of both as a result of dams and barrages and associated structures in the upstream has resulted in pronounced erosion in parts of the delta and reduction in mangroves. Environmental studies to be extended to the entire Indus ecosystem from the mountains to the Arabian sea.”


  • It is clear that deltas and dependent populations and ecosystems have suffered due to near total ignorance about the impact of dams on sediment and deltas and if immediate action is not taken then, this will impact a huge population and a large eco-region in Indian subcontinent, as elsewhere.
  • The impacts of nutrient rich sediment retention and flow reduction is not limited to teh delta, but has also affected marine fish production[32]
  • The issue of impact of a dam on the sediment regime of the river is not being studied or considered at all while conducting Environmental Impact Assessments of projects, appraising the project for options assessment, environmental clearance, cost benefit analysis or through post clearance monitoring and compliance.
  • Sediment release and sediment transport through rivers is not being raised in trans-boundary river negotiations.
  • Looking at the severity of the issue and its far reaching impacts on millions of people in India and across the world, there is a need for adopting urgent and strong mitigation measures against sediment trapping in dams.
  • It has to be remembered that for older dams, older hydropower projects and most irrigation projects, there is no mechanism available to flush the accumulated silt.
  • Sediment retention also reduces the life of the dam, while starving the river and delta in the downstream of sediment. As per a study by SANDRP in 2006, India may be losing 1.95 Billion Cubic Meters of Storage capacity of its reservoirs annually.[33] This implies that the rivers are losing at least that quantity of sediment annually.

The frantic dam activity in Indian Himalayas at this moment will have a serious impact on Ganga Brahmaputra Delta in India and Bangladesh and Indus Delta in Pakistan. There is an urgent need to, firstly, acknowledge these links, assess the impacts, include them in cost benefit and options assessment, address the issues and implement mitigation measures, where relevant, abandon the projects where impacts are unacceptable projects unviable.

In case of the Ganga Brahmaputra delta, recent studies have indicated that the main source of sediment in the river is the Himalayas[34]. Of the entire sediment load of Ganga catchment (This study assumed it to be 794 million tonnes/year), 80+/-10 % comes from High Himalayas and 20+/-10 % comes from Lesser Himalayas.

Bumper to bumper dam/ hydropower project building is occurring in almost all of the Himalayan states in India, which is poised to make Indian Himalayas most densely dammed region in the world. All of these dams are located in the downstream of the Greater and straddling Lesser Himalayas and can together have a tremendous impact on Ganga’s sediment load. Uttarakhand is planning and building nearly 336 Hydroelectric projects,[35]while Sikkim and Himachal Pradesh too are building hundreds of hydro projects. Arunachal Pradesh intends to dam most of its rives to produce hydropower.

No studies on impact of these projects on sediment regime of the rivers are being carried out for; neither does the MoEF insist that projects will not be cleared unless such studies are carried out. Even Cumulative impact assessments are not assessing this aspect.

Some stark examples:

The Cumulative Impact Assessment Report of the Upper Ganga Basin in Uttarakhand [36](where more than one hundred dams are planned and under construction back to back) was doen by IIT Roorkee. This cumulative impact assessment did not study any cumulative impacts due to reduced silt load of the river following major dam push.

The Lohit Basin Study done by WAPCOS[37]which involves more than 12 dams across the Lohit River, one of the three main segments that form Brahmaputra, does not mention anything about impacts of dams on sediments. The only thing it states is very worrying : “Due to substantial storage capacity, the Demwe Upper reservoir will have high sediment retention capacity and a large proportion of sediments carried by the Lohit River will get settled in the reservoir.”

Siang Basin Study [38](by RS Envirolinks Pvt Limited), which involves three mega dams across the main stem Siang, completely obliterating free flowing stretches in the river,in addition to 42 hydropower dams, does not mention anything about sediment regime, although being specifically asked to address this issue by the Expert Appraisal Committee, Union Ministry of Environment & Forests (MoEF).

1500 MW Tipaimukh Mega Dam near Bangladesh Border, which has received Environmental Clearance from MoEF does not study the impacts of sediment retention on downstream Bangladesh, and this concern has been raised by the groups in that country. The Environment Management Plan of this project which can submerge 25000 hectares of forests does not even mention the word “sediment”.

The bumper to bumper dam building activity in Himachal Pradesh in Satluj, Beas, Chenab and Ravi [39]rivers will have a major impact on silt load reaching the Indus river Basin and the Indus Delta in Pakistan. However, none of the EIAs or EMPs mention any impact of the dams on the sediment regime of the river.

In conclusion, although the risks of delta subsidence, effective sea level rise and its impact on a huge population and ecosystems has been established, these risks are being entirely ignored in the current governance surrounding rivers and deltas.

National Centre for Sustainable Coastal Management It is unfortunate to see that MoEF’s National Centre for Sustainable Coastal Management, supported by MoEF and World Bank does not allude to this issue or raise it through any publications.[40] In conversation with SANDRP, Director R. Ramesh said that the center may look at these issues in the future. However, its publications on National Assessment of Shoreline Changes on Tamilnadu and Odisha[41] do not mention upstream dams, although robust evidence exist that Cauvery delta and Mahanadi, Brahmani and Baitarni deltas are eroding due to sediment retention. Let us hope this institute will try to highlight the impact of dams on deltas with the seriousness it deserves.


1. Urgently study impacts of sediment retention by dams on delta population and ecosystems: MoEF, Ministry of Rural Development and Urban Development should conduct an in-depth study to understand the scale of the problems and the extent of affected people and ecosystems due to sediment impoundment by upstream dams.

2.Urgently study the optimal level of sediments (and water regime) needed for stabilising deltas and reducing subsidence.

3. Urgently institute a study to assess the extent of sediment and flows needed to be released from upstream dams and feasibility of such releases on regular basis, mimicking the river’s hydrograph. Where dams have sluice gates, these should be opened in monsoons where feasible, to allow sediment flushing. Even in dry and stressed river basins like Colorado in the United States, such high releases for redistributing sediments have been conducted in the 1990s and again in 2013 with proper planning and impact assessment.[42]

4. In Krishna and such other basins, where delta subsidence, coastal erosion and related impacts like salinity intrusion and storm surges has reached serious proportions, specifically problematic dams should be considered for decommissioning.

 Environmental Appraisal Process

  • Study of impact on sedimentation and siltation should be a part of the environmental impact assessment, environmental appraisal and clearance process.
  • There should be a separate section in EIA for e-flows and sedimentation studies. Similarly such studies should be mandatory part of cumulative impacts, carrying capacity and basin studies.
  • More dams in basins which support large deltaic populations and those having significant impacts of sediment retention by reservoirs should not be cleared.Let us hope that this chronically neglected issue receives the attention it deserves. Delta subsidence and ESLR due to upstream damming again highlights the complex and interconnected nature of the riverine ecosystem. The environmental governance in India ( as also South Asia) surrounding rivers has been treating rivers with an extremely piecemeal approach. It is clear that with the herculean challeneges we face now, such an approach is no longer affordable.


…especially in the part called Delta, it seems to me that if the Nile no longer floods it, then, for all time to come, the Egyptians will suffer – Herodotus, History, c 442 BC (stated in Patrick McCully’s Silenced Rivers)


-Parineeta Dandekar, SANDRP

For PDF file of this blog, see:



Above: Sediment laden waters of River Elwha reaching the coastal waters after Elwha Dam Removal. From:


Patrick McCully, Silenced Rivers: The Ecology and Politics of Large Dams, Zed Books, 1996

Islam et al, The Ganges and Brahmaputra rivers in Bangladesh: basin denudation and sedimentation, Hydrological processes, 1999

R.J. Wasson, A sediment budget for the Ganga–Brahmaputra catchment, Current Science, 2003

B Hema Mali et al, Coastal erosion and habitat loss along the Godavari Delta Front: a fallout of dam construction (?), Current Science, 2004

Syvitski et al, Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean, 2004

Jason P. Ericsson, Charles J. Vörösmarty S. Lawrence Dingmanb,2Larry G. Ward Effective sea-level rise and deltas: Causes of change and human dimension implications, 2006

Michel Meybeckve et al Sea-level rise and deltas: Causes of change and human dimension implications

Inam et al The Geographic, Geological and Oceanographic Setting of the Indus River, Wiley and Sons, 2007

Walling et al, The Changing sediment loads of world’s rivers, Annals of Warsaw University of Life Sciences, 2008

Syvitski et al, Sinking deltas due to human activities, Nature Geoscience, 2009

Gamage et al. Do river deltas in east India retreat? A case of the Krishna Delta, Geomorphology, Volume 103, Issue 4, 15 February 2009

K Nageswar Rao et al Impacts of sediment retention by dams on delta shoreline recession: evidences from the Krishna and Godavari deltas, India, Earth surface processes and landforms, 2010

James Syvitski et al, Sediment flux and the Anthropocene published 31 , doi: 10.1098/rsta.2010.0329 369 2011 Phil. Trans. R. Soc. A, January 2011

H Gupta et al , The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers, Journal of Hydrology, 2012


Chapter 5: Coastal Systems and Low Lying Areas

Chapter 18: Detection and attribution of Impacts

Chapter 24: Asia



[2] Syvitski et al 2009

[3] H Gupta et al , The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers, Journal of Hydrology, 2012

[4]Walling and Fang (2003), Vörösmarty et al., 2003; Syvitski et al.,(2005), Erisson et al, (2005), Walling (2008)


[6]   The role of mega dams in reducing sediment fluxes: A case study of largeAsian riversHarish Guptaa,⇑, Shuh-Ji Kaoa,b, Minhan Daia

[7] Sediment flux and the Anthropocene James P. M. Syvitski and Albert Kettner January 2011, published 31 , doi: 10.1098/rsta.2010.0329 369 2011 Phil. Trans. R. Soc. A

[8] Effective sea-level rise and deltas: Causes of change and human dimension implications

Jason P. Ericsona, Charles J. Vörösmartya,b,1, S. Lawrence Dingmanb,2Larry G. Ward

b, Michel Meybeckve Sea-level rise and deltas: Causes of change and human dimension implications Jason P. Ericson a,⁎, Charles J. Vörösmartya,b,1, S. Lawrence Dingmanb,2Larry G. Ward b, Michel Meybeck

[9] Walling and Fang (2003), Vörösmarty et al., 2003; Syvitski et al.,(2005), Erisson et al, (2005), Walling (2008)

[10] Syvitski et all 2009

[11] Sinking deltas due to human activities, Syvitski et al, 2009, Nature Geoscience

[12] Sinking deltas due to human activities, Syvitski et al, 2009, Nature Geoscience

[13] Ericsson et all, 2006, Effective sea-level rise and deltas: Causes of change and human dimension implications

[14] Sinking deltas due to human activities, Syvitski et al, 2009, Nature Geoscience

[15]Syvitski et al 2009

[16]Syvitski et all 2009

[17] Harish Guptaa, et al The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers



[20] K Nageshwar Rao et al, 2010, Impacts of sediment retention by dams on delta shoreline recession: evidences from the Krishna and Godavari deltas, India Earth surface processes and landforms


[22] K Nageshwar Rao et al, 2010, Impacts of sediment retention by dams on delta shoreline recession: evidences from the Krishna and Godavari deltas, India Earth surface processes and landforms

[23] Time period or age

[24] Do river deltas in east India retreat? A case of the Krishna Delta Nilantha Gamage Geomorphology, Volume 103, Issue 4, 15 February 2009, Pages 533–540





[29] Gupta et al, 2012, The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers, Journal of Hydrology

[30] Islam et al, The Ganges and Brahmaputra rivers in Bangladesh: basin denudation and sedimentation, 1999, Hydrological processes

[31] Harish Gupta et al, The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers, Journal of hydrology, 2012

[32] Drinkwater et al 1994


[34] R.J. Wasson, A sediment budget for the Ganga–Brahmaputra catchment, Current Science, 2003









Ministry of Environment and Forests

Eflows in India: Groping in Darkness

Eflows in India: Groping in Darkness

– Dr. Latha Anantha

It is becoming increasingly evident that ‘rivers’ do not figure anywhere in the entire e flows discourse and assessments going on at Government level in India. We have so many different types of e-flows assessments being tried out.

Multiple agencies, but where are the flows? At least 69 hydro power projects are in various stages of development in Alaknanda – Bhagirathi sub basins of the Ganga (as per IMG records). Four different e-flow regimes based on different approaches have been put forward by the four different agencies. While AHEC (Alternate Hydro Electricity Centre) has used Mean Annual Flows (MAF), WII (Wildlife Institute of India) has resorted to Mean Seasonal Runoff (MSR) for different seasons based on the needs of the fishes. CWC (Central Water Commission) has resorted to ad-hoc e flows of 20 % of daily flows. IMG (Inter-Ministerial Group) has come out with its own recommendation of percentage of daily inflows for different seasons  going upto 50 % for winter season from December – March where winter flows are very low.

The beautiful Nyamjangchu River, Tawang, Arunachal Pradesh, now threatened by the 780 MW Nyamjangchu Hydel Project and very  low eflows recommendation Photo courtesy: Tenzing Rab Monpa
The beautiful Nyamjangchu River, Tawang, Arunachal Pradesh, now threatened by the 780 MW Nyamjangchu Hydel Project and very low eflows recommendation Photo courtesy: Tenzing Rab Monpa

While admitting that Building Block Methodology (BBM) is the most comprehensive holistic methodology, IMG report claims (without basis) that since it is time consuming and since it has not been tried out in any large river basin, interim e-flows recommendations be done so that hydro power development is not held up for want of environmental decisions. Mind you, this is the case with all the rivers where hydro power projects are being planned.  While many of the project developers and EIA agencies claim that they follow BBM methodology, it is evident that none of these fulfill the requirements of a comprehensive BBM methodology. So who cares about the rivers here?

NIH workshop on Oct 2-3, 2013 without MoEF! The National Workshop on Environmental flows organized by the National Institute of Hydrology (NIH), Roorkee along with UK based Centre for Ecology and Hydrology (CEH) during 2-3 Oct 2013 only reinforced my conviction that what is going on in the name of e flows assessment is indeed not for any goodwill for the rivers. The workshop was conspicuous by the absence of MoEF officials whose main mandate is protecting river ecosystems and life in rivers. Were they not invited or did they decide not to participate? It was mostly dominated by technical persons and organisations who believe that rivers are for the exploitation by humans alone mostly through mega projects. The workshop agenda was set on the oft repeated dictum that e flows should be integrated into water resources development, without any will for such integration.

Ganga, completely dry downstream Bhimgouda Barrage, Haridwar Photo: Parineeta, SANDRP
Ganga, completely dry downstream Bhimgouda Barrage, Haridwar Photo: Parineeta, SANDRP

E-flows are for rivers In India e flows is just a formality to fulfill the requirements of the environmental clearance process. Ironically, resource persons from countries outside India with ample experience on e flows assessment pointed out that the intention was to find ways to ‘limit’ or mitigate the impacts of development. If the agenda had been set with the intention that e flows should be part of river conservation and not just to fulfill the development agenda then we would have some hope for rivers.

Developers don’t want any e-flows Project developers are clearly unhappy with even the meager allocation in the name of e flows. The dam builders like the NHPC, Uttaranchal Jal Vidyut Nigam Ltd. and Tehri Hydro Power Corporation claimed that they are actually releasing more water than they are ‘asked to’! This is indeed ridiculous. Even what they are ‘asked to’ release does not amount to e-flows and is not based on any comprehensive assessment or community validation! And there is clear evidence that they are not releasing even that (e.g. NHPC’s Teesta V or Tehri). Then where does the question of reducing e-flows allocation below dams arise? They even went to the extent of recommending that in those rivers where tributaries join the dry stretch below the dam, can’t e flows allocation be reduced and can’t the tributary contribution added as e flows? Can’t e flow releases be used for power generation by installing dam toe power houses? For them e flows is mere ‘cumecs’ (Cubic meters per second) of water to be released and nor do they understand that each tributary and the main stem of the river have their own ecological niches & functions; and social and cultural dependencies which are linked to the flows in each of these.

Dhauliganga before the disaster, with zero water flow downstream from the dam, killing a perennial river. Source: Author
Dhauliganga before the June 2013 disaster, with zero water flow downstream from the dam, killing a perennial river. Source: Emmanuel Theophilus

The presentations made by NIH Roorkee, CIFRI (Central Inland Fisheries Research Institute), GBPIHED (GP Pant Institute of Himalayan Environment and Development) and AHEC for proposed hydro power projects in the Himalayas and the North East India revealed that none of the studies had carried out consultations with river dependent communities and did not follow the BBM principles either.

CIFRI-NIH’s flawed assessment of Teesta IV HEP e-flows Teesta IV HEP proposed in Sikkim is presently under the scanner since many groups have raised the genuine concern with the MoEF (Ministry of Environment and Forests), EAC (Expert Appraisal Committee), FAC (Forest Advisory Committee) and the NBWL (National Board of Wild Life) that if implemented it would mean the death of the last free flowing stretch of the main Teesta river. The ToR (Terms of Reference) of the study commissioned by MoEF says, “An estimation to be made for environmental flows downstream for sustenance of aquatic environment and for downstream uses, considering details of streams joining the river below the proposed dam site with their approximate distance from the dam site, their nature (whether perennial or seasonal) etc. A detailed environmental flows study shall be carried out through the premier institutions such as Central Inland Fisheries Research Institute (CIFRI), Barrackpore and National Institute of Hydrology (NIH), Roorkee for biological and hydrological components”.


The consultants took just 7.5 km length of the river from dam axis to the existing downstream project Teesta V which is immediately downstream. The study carried out in 2009- 2010 period has prescribed a minimum discharge of 10 cumecs (Cubic Meters per second) from the dam during the lean period and 40 cumecs for wet season for aquatic life is also prescribed. The ToR has two objectives namely e flows for the sustenance of aquatic environment and for downstream uses, but the sampling parameters in the presentation does not reflect the fulfillment of these objectives.

Teesta V HEP Photo: Tehelka
Teesta V HEP Photo: Tehelka

Since the Teesta V is already commissioned, the impact below the dammed and flow regulated stretch of Teesta V on the aquatic environment and downstream uses would have given useful comparisons. The study seems to have ignored the e flows for downstream uses of communities even in the 7.5 km stretch. The study though claimed to have used the BBM methodology, it is doubtful if all the relevant building blocks have been considered. The study carried out in 2009-10 does not seem to be uploaded in public domain to date.

E-flows for all projects do not make sense? Most shockingly, the chief consultant for the Ganga River Basin Management Plan now being formulated by a consortium of IITs (Indian Institutes of Technology) Dr Vinod Tare was of the opinion that all projects to release e flows does not make sense. He said it is important to seek balance and generate power as well. Now this is problematic. Let us face it that in Indian conditions we are working on e-flows under data and information deficient conditions. We are still far away from understanding a river system in its complexity along with its basin characters, eco- hydrological interactions and land use changes.

Lack of Eco-hydrological understanding Even NIH engineers and other experts agreed during discussions that we lack reliable hydrological data and have absolutely very little ecological data base on our rivers to arrive at proper recommendations for e-flows. MoEF and NGRBA (National Ganga River Basin Authority) has meanwhile accepted BBM methodology (as in the NGRBA Report; Code – 022_GBP_IIT_EFL_SOA_01_Ver 1_Dec 2011) as the most robust assessment approach to e-flows and they also say it needs to be worked upon.

The report says, ‘The BBM methodology is found to be robust with high confidence level. However, specific flow recommendations are difficult to justify at this stage, and will have to be worked out afresh. The major uncertainties centered on the hydrological and hydraulic models due to lack of availability of reliable data’. In BBM all blocks are equally important as they interact with each other. Against such a scenario, Dr Tare needs to think twice before making such statements! They can be used by dam developers to lobby for reduced or even no flows.

What about e-flows from existing dams? Another missing element from e-flows at the NIH workshop that is bothersome was the lack of interest by the experts and the various authorized institutions in allocating e flows below already dammed rivers. They say it will be a tough job and would not be possible politically. However, ultimately e-flows is a social and political choice with trade offs and negotiations inbuilt into it. Does that imply that we can leave heavily dam ravaged rivers like the Mahanadi, Krishna, Cauvery, Narmada, Tapi, Sabarmati, Godavari, Teesta, Sutlej, Ravi, Beas, Chenab, Periyar and the like to die without allowing them at least their long overdue minimum flows leave alone e flows ? It is high time the Government took interest and started engagement and studies in arriving at and allocating e flows below dammed rivers.

The same Baspa, bone dry, about 5 kms downstream Baspa Dam. Photo: SANDRP Partners
The same Baspa, bone dry, about 5 kms downstream Baspa Dam. Photo: SANDRP Partners

Future challenges After two days of debate and disagreements, I came out of the workshop with the following thoughts at the top of my mind.

Several institutions in this country with expertise in ecology and hydrology and with necessary infrastructure who could have made efforts to put in place comprehensive e-flows assessment process are working for dam developers and serving as experts in EIA studies giving green signals to ill conceived hydro electric projects and dams based on inadequate e-flows recommendations. The level of dilution of science and ethics this can lead to is mind-boggling and with disastrous consequences for our rivers. For example e-flows and minimum environmental flows are being used as synonyms by many institutions including CWC. An interesting and dangerous recommendation from CWC at the workshop is; ‘If feasible, a separate storage of water in the upper reaches of a river basin maybe created for environmental needs which will help in augmenting flows during lean season and satisfy the e-flows demands particularly for Himalayan rivers’. So in future all river basins with dam cascades could be recommended with e-flows reservoirs!

What about compliance, MoEF? While e-flows have become mandatory for hydro power projects in this country, it is surprising and shocking that MoEF is yet to ensure compliance and to take up comprehensive and fundamental assessment of e-flows in sample river basins on its own which is its primary mandate. It is high time MoEF develops a ToR for e-flows from its conception to implementation to monitoring. E-flows assessment presently being carried out lacks proper objectives and mostly excludes communities from its purview or assessment. There is vagueness about what constitutes downstream in e-flows assessment. Even for the e flows assessment carried out in River Ganga for the NGRBA has there been any effort to implement the same? Has the MoEF ever tried to seek inputs on e flows from outside the government organisations or from the several groups working tirelessly for conservation of rivers?

Will NIH exercise have credibility? NIH in collaboration with many institutions proposes to take up sample river basins in India and put in place eco hydrological models for e flows. The absence of MoEF and members of the Expert Appraisal Committee on River Valley Projects at this workshop organized by a MoWR institution speaks for itself how e-flows will be realized if the mandatory ministry does not take a pro active role.

Some of the gaps and challenges in e flows assessment in Indian context include: lack of reliable data, lack of understanding of eco- hydrological linkages, river aquifer interactions, pollution related aspects (how to quantify and relate to flow releases), e-flow releases for flood plains, lack of resource allocation, lack of valuation of ecosystem services and societal – cultural value of rivers, multiple institutions working against each other’s interests (MoWR vs MoEF), Peaking induced flashiness, scientific and acceptable ways to compute e-flows and lastly but most importantly, effective implementation and monitoring.

Experts from other countries pointed out that rather than numbers it is better to have distribution ranges for e flows under Indian conditions with complex dependencies. They also made an important comment that uncertainty and risk factors never get integrated into our e-flows estimations. In India land use changes are also not accounted in e flows calculations.

We have a very long way to go.

Dr. Latha Anantha (

SANDRPs post on NIH Eflows workshop:


NIH Roorkee’s Workshop on Eflows: Where is the credibility?

National Institute of Hydrology (NIH), Roorkee, an organisation under Union Ministry of Water Resources (MoWR) is organising a workshop on Assessment of Environmental flows (E-flows) in Rivers in Roorkee on the 2-3 October 2013.

Any serious engagement with e-flows, from any quarter is a welcome sign. However, NIH’s engagement with eflows is a bit ironic, looking at its past work and support for hydroelectric and large infrastructure projects, without any consideration for environmental flows.

Not surprisingly, NIH has refrained from inviting almost any voices that have been critical about MoWR’s Large Dam agenda. On the other hand, main ‘stakeholders’ invited are representatives from Hydroelectric dam projects! Expectedly, the workshop is looking at environmental flows in a role adversarial to “development”, without understanding the role the rivers play in a society. In fact there is no session on value of rivers, which forms the basis of the concept like eflows.

Let us have a quick look at NIH’s track record and its response to the concept of eflows so far.

Following the Uttarakhand Disaster, Supreme Court on the 13th of August, 2013 said in no uncertain terms that the Cumulative Impact Assessment Study done by AHEC, Roorkee on Upper Ganga Projects “has not made any in-depth study on the cumulative impact of all project components”, practically rejecting AHEC Study. Even the members of the MoEF’s (Ministry of Environment and Forests) EAC (Expert Appraisal Committee) on River Valley Projects have said that e-flows estimated in the AHEC report are unclear. Inter-ministerial Group Report (The BK Chaturvedi Committee) on Upper Ganga Projects has rejected most of the AHEC recommendations for eflows.

National Institute of Hydrology, Roorkee (NIH Roorkee) was a part of the study team of the AHEC Report on Upper Ganga[I] and hence, what this SC order and other agencies have said about AHEC report applies to NIH too.

NIH is supposed to be India’s premier institute on hydrology, but a closer look at the research and projects its done so far makes it clear that NIH is a also an integral part of the lobby that pushes large dams as the only solution to all of India’s water-related problems. The lobby includes the Ministry of Water Resources and the Central Water Commission. These organisations form an integral part of NIH’s organisational structure. Chairman of the governing body of NIH[II] is Secretary, MoWR. Its members include MoWR Joint Secretary and planning commission members. Its Standing Committee is comprised exclusively of MoWR representatives.

NIH introduces Environmental Hydrology as its area of specialisation. One of its tasks is[III] “Estimation of surplus and deficit water availability considering water demand and available water supply”. This concept of surplus and deficit has been used to support Interlinking of Rivers, which is ecologically one of the most destructive water projects in India. This too is explicitly supported by NIH. Note that while doing the studies related to ILR, NIH has assumed NO water for the environment!

It has estimated[IV], “In India, the estimates put a requirement of 10 BCM (billion cubic meters) for the year 2025 and 20 BCM for the year 2050 for EFR purpose.” This estimate, coming from an institute which is supposedly India’s Premier institute on hydrology lacks any ecological, social and scientific justification.

NIH’s thrust on ‘Water Resource Projects’ is so strong that its ‘water resources section’[V] pushes projects like the 2000 MW Lower Subansiri HEP, in Brahmaputra basin, without even mentioning that work on the project has stalled since Dec 2011 and  it is facing the biggest anti dam protest in India, mainly due to downstream impacts and non-transparent decision making processes.

As hydropower projects are being built in cascades in vulnerable regions, NIH has been conspicuously absent from the discourse. It has not taken a stand about e-flows, distance of free flowing rivers between projects and other environmental measures when hydropower projects are being built from Kashmir to Arunachal Pradesh with high disaster potential. On the other hand, through its studies like GLOF Analysis for Jelam Tamak Hydropower project [2] in Alaknanda basin in Uttarakhand, NIH has been largely supporting these projects, underplaying their impacts.

In fact, NIH did a eflows study for Loharinagpala HEP in Bhagirathi, where it assumed that Bhagirathi is a highly degraded river and recommended that 10% MAR will suffice as e-flows[VI], using the Tennant Method. Bhagirathi, which is hailed as the original stream of Ganga is not a ‘highly degraded’ river by stretch of imagination upstream of Maneri Bhali projects, but it will be ‘highly degraded’ if projects pushed by institutes like NIH are implemented. Significantly, Loharinagpala HEP was scrapped because of issues related to e-flows and aviral dhara of Ganga.

Strangely, NIH workshop on Assessing E-flows program starts not by addressing the importance of e-flows, but by stressing the importance of dams! The first session will be on Water Resources Development in India – need for power, irrigation, water supply and dams, to be conducted by NIH itself. It seems that this workshop is an attempt to get more eflows consultancies from private and government hydel projects.

Groups like WAPCOS (also a MoWR institute) and CIFRI have been churning out studies after studies with shoddy analysis and wrong biodiversity assessments, helping the project proponents and destroying the river further. However, communities, groups, and even judiciary are now putting its foot down about these shoddy studies.

NIH should realise that eflows are not one more of their studies which can be carried out excluding wide range of stakeholders: from communities to ecosystems. NIH has poor track record on eflows and it will have to do much more than organising workshops on eflows, if it is looking to establish its credibility on the issue.  


[1] Environmental flows or E-Flows are defined as: ‘Environmental Flows describe the quantity, quality and timing of water flows required to sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on these ecosystems.” (Brisbane Declaration 2007)

[2] which has been rejected by Wildlife Institute of India and even BK Chaturvedi committee has suggested that the project should be taken up only after Ganga Basin Management Plan from IIT Consortium

[VI] “The E-Flow value computed by the Tenants method, considering it as 10% of the MAR, is 3848 Cumec Days for a calendar year” (NIH: Concluding Remarks No 10): Source: Dr. Bharat Jhunjhunwala’s Letter to IITR

Expert Appraisal Committee · Hydropower · Ministry of Environment and Forests

EAC’s norms for Eflows need to Change: Submission from civil society

The following submission has been sent to the Expert Appraisal Committee, River Valley and Hydro Power Projects, Ministry of Environment and Forests, India. The current norms recommended by EAC while clearing hydropower and irrigation projects are hardly leaving any water for the rivers (eflows), thereby destroying rivers as well as livelihoods.

  Norms on e-flows followed by EAC need to change

 Respected Chairperson and members,

As you know, the Inter ministerial Group on Ganga Basin was constituted by the Union Ministry of Environment and Forests through an order issued on June 15, 2012. It has subsequently submitted its report to the MoEF in April 2013.

While there are several issues about IMG’s report and recommendations, some of the recommendations are the minimum, urgent stop gap measures that need to be implemented by the EAC. IMG’s recommendations are relevant for nearly all rivers across the country. All of the rivers have rich social and religious values and a large proportion of population depends on them for livelihood. Hence, the recommendations of IMG logically apply to all the rivers. In line with the IMG Report recommendations, we urge the EAC to modify its recommendations about eflows and environmental impacts as suggested below:

1.           Eflows

a.           Eflows to be based on daily uninterrupted flows, not seasonal flows

The IMG report states that: “An important component of the e-flows regime has to be mimicking of the river flows so as to keep it very close to the natural flows. Cumulative norms even on seasonal basis do not meet this objective. Daily inflow norms may, however, enable a sustained river flow as well as have large flows in the high season and hence are more suitable.” (emphasis added)

IMG has thus recommended that all dams and hydro projects should release water based on daily inflows, following the % releases recommended in each season, but the releases must change as per daily inflows.

 b.           Eflows as 30-50% of daily lean season flows

The IMG report recommends that releases should be 50% of lean season flows where average lean season flow is less than 10% of the average high season flow. Where average lean season flow is 10-15% of the average high season flows, the releases should be 40% of inflows and where 30% for the rest of the rivers.

In keeping with IMG recommendations, we urge that the EAC should be recommending 50% average daily flows in lean season as eflows.

c.           Independent, community-based monitoring of Eflows releases

Monitoring of eflows releases from operating projects is crucial, given the fact that it is currently entirely in the hands of the proponent without any monitoring of compliance by the MoEF. In such a situation, proponents are not releasing any eflows as pointed out by the one person Avay Shukla Committee Report, recent CAG report of Himachal Pradesh.

IMG recommends: The IMG has considered the need for an effective implementation of the e-flows as cardinal to its recommendations. It is recommended that the power developer must be responsible for developing a monitoring system which is IT-based and gives on a real time basis the flow of water in the river, both at the inflow and in the outflow after the river gates in the river stream. This should be

(a) monitored by an independent group

(b) reviewed yearly by the Ministry of Environment and Forests in the first five years and

(c) put in public domain the e-flows. This real time public monitoring of e-flows will be the key.

We urge that that EAC recommends similar monitoring norms for all projects. Effective monitoring cannot be done if local affected population is not a part of this process, hence, in addition to above points, EAC should recommend that eflows should be monitored by an independent group which has at least 50% participation of downstream communities facing the impacts of these projects.

d.           Assessing eflows only through participatory and true Building block Methodology (BBM)

The IMG states: “Considering environment, societal,  religious needs of the community and also taking  into taken in to account the status of river Ganga as national river, the IMG recommends adoption of Building Block Methodology (BBM) for assessing the e-flow requirements on a long-term basis. This recognizes the fact that the riverine species are reliant on basic elements (Building Block) of the flow regime, including low flows, and floods that maintain the sediment dynamics and geo-morphological structure. It also includes an understanding of the functional links between hydrology and ecology of the river systems.”

However, the EAC is accepting any eflows assessment as BBM, simply looking at the label provided by EIA consultants, without applying its mind. We have pointed out that BBM purportedly used by consultants like WAPCOS in Lohit Basin Study is not BBM in any sense.

We urge the EAC to:

·                     Recommend methodology of BBM assessment clearly at the time of granting TORs (This is available from WWF or here: King, J.M., Tharme, R.E., and de Villers, MS. (eds.) (2000). Environmental flow assessments for rivers: manual for the Building Block Methodology. Water Resources Commission Report TT 131/100, Pretoria, South Africa. ),

·                     Recommend sectors which should be included in BBM study of a specific river (downstream users, fishermen, geomorphology experts, ecologists, etc.) clearly at the time of granting TOR. Downstream users should form a part of the BBM Group in all circumstances.

·                     Check whether these sectors are duly represented in flows studies

And only then accept the study as being based on BBM methodology. The current practice of EAC of accepting any shoddy assessment as BBM is serving neither the rivers, nor the communities, nor is it expanding India’s experience with BBM.

e. Release of Eflows

It is not just how much the releases are, but how the releases are made that decides if the releases are useful for the rivers, biodiveristy and the society. Unfortunately, EAC has given no attention to this issue.

In this context, one of the guideline of the IMG says, “Fish passes may be made an integral part of hydropower projects. Regular monitoring for their effectiveness be done by project developers.”

EAC should follow this and make well designed eflow release mechanism mandatory part of the EIA study and post-construction monitoring.

2. Free flowing river stretch between projects

Currently, the EAC has a very lax norm of recommending 1 km distance of the river between two projects. In many cases, the EAC is not following even this minimalist distance criterion. Nor is it following recommendations of civil society, or expert committees of having minimum 5 kms of free flowing river before it meets the downstream project/submergence.

In this regard, the IMG notes “There is a clear need to ensure that adequate river length is available to meet the societal needs and River gets adequate time during its flow to regenerate itself.” 

The EAC should include, as part of EIA and TOR a detailed study of:

·                     “Time” required by the river between two projects to rejuvenate itself and how much distance the river need to have such time to rejuvenate itself.

·                     Ecology (including livelihood fisheries) downstream of a project and how it will be affected by modified flows while granting TORs to hydro projects.

·                     Social and cultural use of the river downstream the project: presence of religious sites, river sanctuaries, etc. while granting TORs to hydro projects.

Based on this, the EAC should recommend distance of free flowing river that needs to be maintained downstream a specific project. This should be applicable even if this was not stated at the time of deciding TOR.

3.           Recommend Free flowing and Pristine rivers in all basins

World over, there exist norms and laws to protect free flowing rivers as “Pristine, Wild or Heritage Rivers”. EAC has been recommending damming most of the rivers in the country in the recent years. The EAC should recommend that some rivers should be maintained in their pristine, undammed (or with the current stage of development, no further) condition.

In fact, the IMG has specifically recommended: “ The River Ganga has over a period of years suffered environmental degradation due to various factors. It will be important to maintain pristine river in some river segments of Alaknanda and Bhagirathi. It accordingly recommends that six rivers, including Nayar, Bal Ganga, Rishi Ganga, AssiGanga, Dhauli Ganga (upper reaches), Birahi Ganga and Bhyunder Ganga, should be kept in pristine form and developments along with measures for environment up gradation should be taken up.”

Unfortunately, currently the EAC is actually clearing projects when Cumulative Impact Studies or Basin Studies on such rivers are not completed or are on-going (Example: Chenab Basin Projects, Satluj Basin Projects, Lohit Basin Projects). We have pointed this out to the EAC on number of occasions, without any response.

We urge the EAC to recommend a few ecologically and socially important rivers in each basin as pristine rivers, to be protected from any projects at the time of clearing basin studies or cumulative impact assessment studies. At the same time, the EAC should analyse the present development stage of a basin while clearing specific projects and should recommend some rivers in pristine state. In places like North East India and western Ghats, certain river basins may need to be left in pristine state.

 4.           Recommendations to the MoEF about eflows from existing projects

The IMG has made a clear recommendation in this regard: “The suggested e-flows should be applicable to the existing power projects in operation in these States.” IMG has given maximum of three years for the projects to achieve e-flows.

We urge the EAC to make a recommendation to the MoEF to look at existing projects and recommend eflows norms on the same lines as those for new projects in time bound manner.

As the World Environment Day is drawing close, we are sure that the EAC will look at its role of protecting the Riverine environment and communities and will take proactive steps in this regard.

Looking forward to your point-wise response to the issues raised above.

Thanking you,

Yours Sincerely,


Himanshu Thakkar and Parineeta Dandekar, 

South Asia Network on Dams, Rivers and People (

Samir Mehta, 

International Rivers (

Dr. Latha Anantha, 

River Research Centre, Kerala (